Đôi một vuông góc là gì

     

Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc với nhau. Gọi \(H\) là hình chiếu của \(O\) trên \(mp(ABC)\). Mệnh đề nào sai trong các mệnh đề sau:

Lời giải của GV racingbananas.com


*

Ta có \(OA \bot (OBC) \Rightarrow OA \bot BC,\) mà \(OH \bot BC\) \( \Rightarrow BC \bot (OAH) \Rightarrow BC \bot AH\).Bạn đang xem: Đôi một vuông góc là gì

Tương tự, ta có \(AB \bot CH\), suy ra đáp án A, D đúng.

Bạn đang xem: Đôi một vuông góc là gì

Ta có \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{I^2}}} \) \(= \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O{B^2}}} + \dfrac{1}{{O{C^2}}}\)

với \(I = AH \cap BC\), suy ra đáp án C đúng.

Đáp án cần chọn là: b


*

Sau này các em có thể coi đây như một tính chất cần nhớ để sử dụng:

Trong tứ diện vuông (ba cạnh tại một đỉnh vuông góc với nhau), hình chiếu của đỉnh đó lên mặt đối diện là trực tâm của tam giác đó.


*

*

*

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và \(AB \bot BC\). Dựng \(AH\) là đường cao của \(\Delta SAB\). Khẳng định nào sau đây sai?

Cho hình chóp \(S.ABC\) có \(SA \bot (ABC)\) và \(AB \bot BC.\) Số các mặt của tứ diện \(S.ABC\) là tam giác vuông là:

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và độ dài các cạnh bên \(SA = SB = SC = b.\) Gọi \(G\) là trọng tâm của tam giác \(ABC.\) Độ dài đoạn thẳng \(SG\) bằng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot \left( {ABCD} \right)\). Gọi \(AE;AF\) lần lượt là các đường cao của tam giác \(SAB\) và tam giác $SAD$. Gọi \(M\) là giao điểm của \(SC\) với \( (AEF) \). Chọn khẳng định đúng trong các khẳng định sau ?

Cho hình chóp \(S.ABC\) có cạnh \(SA \bot \left( {ABC} \right)\) và đáy \(ABC\) là tam giác cân ở \(C\). Gọi \(H\) và \(K\) lần lượt là trung điểm của \(AB\) và \(SB\).

Xem thêm: Game Đố Vui Dân Gian Hay Nhất, 1001 Câu Đố Vui Dân Gian Hay Và Hại Não Nhất

Khẳng định nào sau đây sai?

Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc với nhau. Gọi \(H\) là hình chiếu của \(O\) trên \(mp(ABC)\). Mệnh đề nào sai trong các mệnh đề sau:

Cho tứ diện \(ABCD\) có \(AB \bot CD\) và \(AC \bot BD\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên \(mp(BCD)\). Các khẳng định sau, khẳng định nào sai?

Cho hình chóp $SABC$ có $SA \bot \left( {ABC} \right).$ Gọi $H,{\rm{ }}K$ lần lượt là trực tâm các tam giác $SBC$ và$ABC$. Mệnh đề nào sai trong các mệnh đề sau?

Cho hai hình chữ nhật $ABCD$ và $ABEF$ nằm trong hai mặt phẳng khác nhau sao cho hai đường thẳng $AC$ và $BF$ vuông góc với nhau. Gọi $CH$ và $FK$ lần lượt là đường cao của hai tam giác $BCE$ và $ADF$.

Khẳng định nào sau đây là sai?

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông và \(SA \bot \left( {ABCD} \right)\). Gọi \(I\), \(J\), \(K\) lần lượt là trung điểm của \(AB\), \(BC\) và \(SB\). Khẳng định nào sau đây sai?

Cho hình tứ diện \(ABCD\) có $AB$, $BC$, $CD$ đôi một vuông góc nhau. Hãy chỉ ra điểm \(O\) cách đều bốn điểm \(A\), \(B\), \(C\), \(D\).

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, mặt bên $SAB$ là tam giác đều và $SC = a\sqrt 2 $. Gọi $H,K$ lần lượt là trung điểm của các cạnh $AB$ và $AD$.Khẳng định nào sau đây là sai?.

Cho hình chóp $S.ABC$ có $\widehat {BSC} = {120^0},\widehat {CSA} = {60^0},\widehat {ASB} = {90^0},$ $SA = SB = SC.$ Gọi $I$ là hình chiếu vuông góc của $S$ lên $mp\left( {ABC} \right).$ Chọn khẳng định đúng trong các khẳng định sau

Cho tứ diện $OABC$ có $OA,OB,OC$ đôi một vuông góc với nhau. Gọi $H$ là hình chiếu của $O$ trên mặt phẳng $\left( {ABC} \right)$. Xét các mệnh đề sau :

I. Vì $OC \bot OA,OC \bot OB$ nên $OC \bot \left( {OAB} \right)$.

II. Do $AB \subset \left( {OAB} \right)$nên $AB \bot OC.{\rm{ }}\left( 1 \right)$

III. Có $OH \bot \left( {ABC} \right)$ và $AB \subset \left( {ABC} \right)$nên $AB \bot OH.{\rm{ }}\left( 2 \right)$

IV. Từ $\left( 1 \right)$ và $\left( 2 \right) \Rightarrow AB \bot \left( {OCH} \right)$

Số mệnh đề đúng trong các mệnh đề trên là:

Cho hình hộp $ABCD.A"B"C"D"$ có đáy là hình thoi $\widehat {BAD} = {60^0}$ và $A"A = A"B = A"D$. Gọi $O = AC \cap BD$. Hình chiếu của $A"$ trên $\left( {ABCD} \right)$ là :